Abstract
Widespread atrazine use is associated with an increasing incidence of contamination of drinking water. Thus, a biosensor using molecularly imprinted polymers (MIPs) was developed to detect the amount of atrazine in water to ensure prevention of exposure levels that could lead to reproductive effects in living organisms. In this study, the influence of the porogen on the selectivity of MIPs was investigated. The porogen plays a pivotal role in molecular imprinting as it affects the physical properties and governs the prepolymerization complex of the resulting polymer, which in turn firmly defines the recognition properties of the resulting molecularly imprinted polymer (MIP). Therefore, bulk MIPs against atrazine (Atr) were synthesized based on methacrylic acid (MAA) as a functional monomer and ethyleneglycol dimethacrylate (EGDMA) as a crosslinker; they were prepared in toluene and dimethyl sulfoxide (DMSO). The imprinting factor, binding capacity, and structural stability were evaluated using the respective porogenic solvents. Along with the characterization of the morphology of the obtained polymers via SEM and BET analysis, the kinetic and adsorption analyses were demonstrated and verified. The highest imprinting factor, binding capacity, and the highest structural stability were found to be on polymer synthesized in a medium of MAA and EGDMA, which contained 90% toluene and 10% DMSO as porogen. Moreover, the response for Atr concentrations by the PVC-based electrochemical sensor was found to be at a detection limit of 0.0049 μM (S/N = 3). The sensor proved to be an effective sensor with high sensitivity and low Limit of Detection (LOD) for Atr detection. The construction of the sensor will act as a baseline for a fully functionalized membrane sensor.
Funder
Ministry of Higher Education, Malaysia
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献