Abstract
Solvent-resistant UV-cured supports consisting of a semi-interpenetrating network of polysulfone (PSf) and cross-linked poly-acrylate were successfully synthesized for the first time using an alternative, non-reprotoxic, and biodegradable solvent. Tamisolve® NxG is a high-boiling, dipolar aprotic solvent with solubility parameters similar to those of dimethylformamide (DMF) and N-methyl-2-pyrrolidone (NMP), making it an eco-friendly alternative. The support membranes, prepared via UV-curing followed by non-solvent-induced phase inversion, can serve as a universal solvent-resistant support for the synthesis of a broad set of membranes, for which the selective layer can be deposited from any solvent. Parameters such as UV irradiation time and intensity, as well as the concentrations of PSf, penta-acrylate, and photo-initiator in the casting solution were varied to obtain such supports. The characteristics of the resulting supports were investigated in terms of separation performance, hydrophobicity, porosity, degree of acrylate conversion, and pure water flux. The resulting membranes showed improved chemical resistance in solvents such as ethyl acetate, NMP, tetrahydrofuran (THF), and toluene. Solvent-resistant supports with different pore sizes were synthesized and used for the preparation of thin film composite (TFC) membranes to demonstrate their potential. Promising separation performances with Rose Bengal (RB) rejections up to 98% and water permeances up to 1.5 L m−2 h−1 bar−1 were reached with these TFC-membranes carrying a polyamide top layer synthesized via interfacial polymerization.
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献