Author:
Wang Xiao,Shen Zhihua,Li Jie,Wu Shengli
Abstract
IGZO thin films can be used as active layers of thin-film transistors and have been widely studied. However, amorphous indium gallium zinc oxide (IGZO) fabricated at room temperature is vulnerable in subsequent manufacturing processes, such as etching and sputtering; this limits IGZO thin film transistors’ (TFTs) use in commercial products. In this paper, we prepared a c-axis crystallized IGZO thin film by Radio Frequency (RF) sputtering at 180 °C, with a 50% O2 ratio and 110 W power. XRD images show that the crystallized film has an obvious diffraction peak near 31°, and the spacing between the crystal surfaces was calculated to be ≈0.29 nm. The HRTEM map confirmed the above results. The stability of IGZO thin films was investigated by etching them with an acid solution. The crystalline IGZO films exhibited better acid corrosion resistance, and their anticorrosion performance was 74% higher than that of amorphous IGZO (a-IGZO) films, indicating the crystalline IGZO film can provide more stable performance in applications.
Funder
National Natural Science Foundation of China
the Scientific Research Startup Foundation of Shaanxi University of Science and Technology
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献