Study of Annealed Aquivion® Ionomers with the INCA Method †

Author:

Giancola Stefano,Arciniegas Raul Andres BecerraORCID,Fahs Armand,Chailan Jean-FranҫoisORCID,Di Vona Maria Luisa,Knauth Philippe,Narducci RiccardoORCID

Abstract

We investigated the possibility to increase the working temperature and endurance of proton exchange membranes for fuel cells and water electrolyzers by thermal annealing of short side chain perfluorosulfonic acid (SSC-PFSA) Aquivion® membranes. The Ionomer nc Analysis (INCA method), based on nc/T plots where nc is a counter elastic force index, was applied to SSC-PFSA in order to evaluate ionomer thermo-mechanical properties and to probe the increase of crystallinity during the annealing procedure. The enhanced thermal and mechanical stability of extruded Aquivion® 870 (equivalent weight, EW = 870 g·mol−1) was related to an increase of long-range order. Complementary differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) measurements confirmed the increase of polymer stiffness by the annealing treatment with an enhancement of the storage modulus over the whole range of temperature. The main thermomechanical relaxation temperature is also enhanced. DSC measurements showed slight base line changes after annealing, attributable to the glass transition and melting of a small amount of crystalline phase. The difference between the glass transition and melting temperatures derived from INCA plots and the ionic-cluster transition temperature derived from DMA measurements is consistent with the different experimental conditions, especially the dry atmosphere in DMA. Finally, the annealing procedure was also successfully applied for the first time to an un-crystallized cast membrane (EW = 830 g·mol−1) resulting in a remarkable mechanical and thermal stabilization.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3