Electrochemical Analysis of Polymer Membrane with Inorganic Nanoparticles for High-Temperature PEM Fuel Cells

Author:

Choi DongWoongORCID

Abstract

In order to solve the challenge that battery performance rapidly deteriorates at a high temperature condition of 100 °C or higher, ZrO2-TiO2 (ZT) with various Zr:Ti ratios synthesized by a sol-gel method were impregnated in a Nafion membrane. Through material characterization, a unique ZT crystal phase peak with a Zr-O-Ti bond was identified, and the band range associated with this bond and intrinsic functional group region could be identified. These prepared powders were blended with 10% (w/w) Nafion-water dispersion to prepare composite Nafion membranes (NZTs). The water uptake increased and the ion exchange capacity decreased as the TiO2 content increased in the NZTs in which particles were uniformly distributed. These results were superior to those of the conventional Nafion 112. The electrochemical properties of all membranes was measured using a polarization curve in a single cell with a reaction area of 9 cm2, and the operating conditions in humidified H2/air was 120 °C under 50% relative humidity (RH) and 2 atm. The composite membrane cell with nanoparticles of a Zr:Ti ratio of 1:3 (NZT13) exhibited the best electrochemical characteristics. These results can be explained by the improved physicochemical properties of NZT13, such as optimized water content and ion exchange capacity, strong intermolecular forces acting between water and nanofillers (δ), and increased tortuosity by the fillers (τ). The results of this study show that the NZT membrane can replace a conventional membrane under high-temperature and low-humidity conditions. To examine the effect of the content of the inorganic nanomaterials in the composite membrane, a composite membrane (NZT-20, NZT-30) having an inorganic nano-filler content of 20 or 30% (w/w) was also prepared. The performance was high in the order of NZT13, NZT-20, and NZT-30. This shows that not only the operating conditions but also the particle content can significantly affect the performance.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3