Flame-Resistant Poly(vinyl alcohol) Composites with Improved Ionic Conductivity

Author:

Serbezeanu Diana1ORCID,Hamciuc Corneliu1ORCID,Vlad-Bubulac Tăchiță1ORCID,Ipate Alina-Mirela1,Lisa Gabriela2ORCID,Turcan Ina34,Olariu Marius Andrei3ORCID,Anghel Ion5,Preda Dana Maria5

Affiliation:

1. Department of Polycondensation and Thermally Stable Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania

2. Department of Chemical Engineering, Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, Bd. Mangeron 73, 700050 Iasi, Romania

3. Department of Electrical Measurements and Materials, “Gheorghe Asachi” Technical University of Iasi, Bld. Prof. Dr. Doc. D. Mangeron 67, 700050 Iasi, Romania

4. Academy of Romanian Scientists, Splaiul Independentei 54, 050094 Bucharest, Romania

5. Police Academy “Alexandru Ioan Cuza”, Fire Officers Faculty, Morarilor Str. 3, Sector 2, 022451 Bucharest, Romania

Abstract

Flame-resistant polymer composites were prepared based on polyvinyl alcohol (PVA) as a polymer matrix and a polyphosphonate as flame retardant. Oxalic acid was used as crosslinking agent. LiClO4, BaTiO3, and graphene oxide were also incorporated into PVA matrix to increase the ionic conductivity. The obtained film composites were investigated by infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry and microscale combustion tests. Incorporating fire retardant (PFRV), BaTiO3, and graphene oxide (GO) into a material results in increased resistance to fire when compared to the control sample. A thermogravimetric analysis revealed that, as a general trend, the presence of PFRV and BaTiO3 nanoparticles enhances the residue quantity at a temperature of 700 °C from 7.9 wt% to 23.6 wt%. Their dielectric properties were evaluated with Broad Band Dielectric Spectroscopy. The electrical conductivity of the samples was determined and discussed in relation to the LiClO4 content. The electrical properties, including permittivity and conductivity, are being enhanced by the use of LiClO4. Additionally, a relaxation peak has been observed in the dielectric losses at frequencies exceeding 103 Hz. The electrical properties, including permittivity and conductivity, are being enhanced by the use of LiClO4. Additionally, a relaxation peak has been observed in the dielectric losses at frequencies exceeding 103 Hz. Out of the various composites tested, the composite containing 35 wt% of LiClO4 exhibits the highest alternating current (AC) conductivity, with a measured value of 2.46 × 10−3 S/m. Taking into consideration all the aspects discussed, these improved composites are intended for utilization in the manufacturing of Li-Ion batteries.

Funder

Ministry of Research, Innovation and Digitization

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3