Alleviating Ultrafiltration Membrane Fouling Caused by Effluent Organic Matter Using Pre-Ozonation: A Perspective of EEM and Molecular Weight Distribution

Author:

Gao Kuo12ORCID,Yang Hong1,Liu Haichen1,Dong Bingzhi3

Affiliation:

1. Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200335, China

2. School of Environment, Harbin Institute of Technology, Harbin 150090, China

3. School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China

Abstract

Wastewater reclamation has gradually become an important way to cope with the global water crisis. Ultrafiltration plays an imperative part as a safeguard for the aim but is often limited by membrane fouling. Effluent organic matter (EfOM) has been known to be a major foulant during ultrafiltration. Hence, the primary aim of this study was to investigate the effects of pre-ozonation on the membrane fouling caused by EfOM in secondary wastewater effluents. In addition, the physicochemical property changes of EfOM during pre-ozonation and the subsequent influence on membrane fouling were systemically investigated. The combined fouling model and the morphology of fouled membrane were adopted to scrutinize the fouling alleviation mechanism by pre-ozonation. It was found that membrane fouling by EfOM was dominated by hydraulically reversible fouling. In addition, an obvious fouling reduction was achieved by pre-ozonation with 1.0 mg O3/mg DOC. The resistance results showed that the normalized hydraulically reversible resistance was reduced by ~60%. The water quality analysis indicated that ozone degraded high molecular weight organics such as microbial metabolites and aromatic protein and medium molecular weight organics (humic acid-like) into smaller fractions and formed a looser fouling layer on the membrane surface. Furthermore, pre-ozonation made the cake layer foul towards pore blocking, thereby reducing fouling. In addition, there was a little degradation in the pollutant removal performance with pre-ozonation. The DOC removal rate decreased by more than 18%, while UV254 decreased by more than 20%.

Funder

Research Project of China Three Gorges Corporation

Research Project of Shanghai Investigation, Design & Research Institute Co., Ltd.

Scientific and Innovative Action Plan of Shanghai

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3