Quantifying Qiyi Glacier Surface Dirtiness Using UAV and Sentinel-2 Imagery

Author:

Chen Jiangtao12,Wang Ninglian123ORCID,Wu Yuwei12,Chen Anan12,Shi Chenlie12ORCID,Zhao Mingjie12,Xie Longjiang12

Affiliation:

1. Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi’an 710127, China

2. Institute of Earth Surface System and Hazards, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China

3. State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China

Abstract

The glacier surface is composed not only of ice or snow but also of a heterogeneous mixture of various materials. The presence of light-absorbing impurities darkens the glacier surface, reducing local reflectance and thereby accelerating the glacier melting process. However, our understanding of the spatial distribution of these impurities remains limited, and there is a lack of studies on quantifying the dirty degree of glacier surfaces. During the Sentinel satellite overpass on 21 August 2023, we used an ASD FieldSpec3 spectrometer to measure the reflectance spectra of glacier surfaces with varying degrees of dirtiness on the Qiyi glacier, Qinghai–Tibet Plateau. Using Multiple Endmember Spectral Mixture Analysis (MESMA), the Sentinel imagery was decomposed to generate fraction images of five primary ice surface materials as follows: coarse-grained snow, slightly dirty ice, moderately dirty ice, extremely dirty ice, and debris. Using unmanned aerial vehicle (UAV) imagery with a 0.05 m resolution, the primary ice surface was delineated and utilized as reference data to validate the fraction images. The findings revealed a strong correlation between the fraction images and the reference data (R2 ≥ 0.66, RMSE ≤ 0.21). Based on pixel-based classification from the UAV imagery, approximately 80% of the glacier surface is covered by slightly dirty ice (19.2%), moderately dirty ice (33.3%), extremely dirty ice (26.3%), and debris (1.2%), which significantly contributes to its darkening. Our study demonstrates the effectiveness of using Sentinel imagery in conjunction with MESMA to map the degree of glacier surface dirtiness accurately.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3