Author:
Li Lin,Sun Meiping,Mei Jing
Abstract
Clouds are an indispensable part of climate change, and the occurrence and development of clouds in the Qinghai Lake area (QHL) have great significance for the regional energy budget and precipitation system. To a certain extent, clouds will affect the water resources, agriculture, animal husbandry, and photovoltaic power industry in this region. In this study, we used CloudSat satellite data, combined with meteorological elements and atmospheric circulation, to analyze the cloud occurrence frequency and cloud water content in QHL. The results demonstrate that the frequency of cloud occurrences in QHL is 33% with a decreasing trend from 2006 to 2019. Altostratus and Nimbostratus are the main types of cloud systems in QHL. The cloud ice water content is 62.21 mg/m3 and the cloud liquid water content is 261.66 mg/m3. The highest value of the vertical cloud fraction occurs from March to June, at a height of 7–11 km in QHL. The height of the mixed-phase clouds is approximately 4–8 km and the ice clouds are above 8 km. The vertical distribution of ice particles is relatively dispersed, while the vertical distribution of liquid particles is relatively concentrated. The time and height of high particle effective radius and high particle concentration are consistent with the high value of cloud water content. The decrease in total cloud occurrence frequency in QHL is caused by the increase in temperature. This study helps to clarify the detailed structure of clouds and the distribution of cloud water resources, which has an important reference value for the study of climate change impact and the sustainable development of lake resources in QHL.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献