Full-Scale Experimental Study on Prefabricated Greening Ecological Retaining Walls

Author:

Wang Xinquan,Li Xiao,Zhu Cong,Diao HongguoORCID,Wang KangyuORCID,Huang Tianyuan,Tu Jiewen,Que Yichen

Abstract

Prefabricated walls are frequently utilized as retaining structures in different applications. A new type of prefabricated greening ecological retaining wall (PGERW) is proposed in this research. Full-scale tests and numerical simulations were conducted to investigate the stress characteristics of the PGERW. To this end, the load–stress relationship, load–displacement relationship, and crack development of the retaining wall columns were carefully evaluated. It was found that when the load acting on the 3 m high column reached the ultimate load-bearing capacity (about 150 kN), an “arc + 7”-shaped crack pattern emerged. A V-shaped crack composed of bolt–chamfer cracks formed when the load applied to a 2.5 m high column reached the ultimate load-bearing capacity (about 335 kN). The design of hollow thin-walled columns can effectively reduce the amount of concrete used and, as a consequence, reduce its carbon emissions, while meeting the design strength requirements of the retaining wall. The PGERW addresses the challenges of improving the extent of greening and drainage performance of traditional prefabricated retaining walls. It has excellent applicability to highway slope construction and therefore can be applied in several contexts.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Zhejiang Province

Science and technology project supported by the Department of transportation of Zhejiang Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3