Abstract
As more people utilize the cloud, more employment opportunities become available. With constraints such as a limited make-span, a high utilization rate of available resources, minimal execution costs, and a rapid turnaround time for scheduling, this becomes an NP-hard optimization issue. The number of solutions/combinations increases exponentially with the magnitude of the challenge, such as the number of tasks and the number of computing resources, making the task scheduling problem NP-hard. As a result, achieving the optimum scheduling of user tasks is difficult. An intelligent resource allocation system can significantly cut down the costs and waste of resources. For instance, binary particle swarm optimization (BPSO) was created to combat ineffective heuristic approaches. However, the optimal solution will not be produced if these algorithms are not paired with additional heuristic or meta-heuristic algorithms. Due to the high temporal complexity of these algorithms, they are less useful in real-world settings. For the NP problem, the binary variation of PSO is presented for workload scheduling and balancing in cloud computing. Considering the updating and optimization constraints stated in this research, our objective function determines if heterogeneous virtual machines (VMs) Phave the most significant difference in completion time. In conjunction with load balancing, we developed a method for updating the placements of particles. According to the experiment results, the proposed method surpasses existing metaheuristic and heuristic algorithms regarding work scheduling and load balancing. This level of success has been attainable because of the application of Artificial Neural Networks (ANN). ANN has demonstrated promising outcomes in resource distribution. ANN is more accurate and faster than multilayer perceptron networks at predicting targets.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献