Mathematical Modelling of the Entrainment Ratio of High Performance Supersonic Industrial Ejectors

Author:

Friso DarioORCID

Abstract

For many years now, manufacturers have been producing supersonic ejectors with a high entrainment ratio for the chemical, oil, and food industries. In the present work, mathematical modelling of the entrainment ratio of such industrial ejectors is carried out, in which a variation of the diffuser efficiency is also assumed to be a function of the Mach number of the motive gas. To determine this unknown relationship, the mathematical modelling was overturned by inserting the entrainment ratios of ten different high-performance industrial ejectors, as identified through an experimental investigation. The mathematical modelling, completed through the use of the relationship between the diffuser efficiency and the Mach number of the motive gas, was applied to sixty-eight ejectors, built and tested experimentally over the last twenty years as part of research aimed at the development of thermal ejector refrigeration systems (ERSs), to obtain the entrainment ratios proposed by the manufacturers (industrial entrainment ratios). A comparison of the experimental entrainment ratios with respect to the industrial ones demonstrated that the former were always lower, ranging from a minimum of −17% to a maximum of −82%. These results indicate that the lab-built ejectors for ERS prototypes can be improved. Therefore, in the future, researchers should apply numerical analysis iteratively, starting from a given geometry of the ejector, and modifying it until the numerical analysis provides the industrial value of the entrainment ratio.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference72 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3