Affiliation:
1. College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
2. College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
Abstract
The technology for the selective catalytic reduction of NOx by CO (CO-SCR) has the capability to simultaneously eliminate CO and NOx from industrial flue gas and automobile exhaust, thus making it a promising denitrification method. The advancement of cost-effective and high-performing catalysts is crucial for the commercialization of this technology. Mn-based catalysts demonstrate enhanced catalytic efficiency under conditions of low temperature and low oxygen content when compared to other transition metal-based catalysts, indicating significant potential for practical applications. This review outlines the diverse Mn-based catalysts, including bulk or supported MnOx catalysts, bulk or supported Mn-based composite oxide catalysts, and the use of MnOx as dopants. Subsequently, the synthesis methods and catalytic mechanism employed by Mn-based catalysts are presented. The following section examines the impact of O2, H2O, and SO2 on the catalytic performance. Finally, the potential and implications of this reaction are deliberated. This work aims to offer theoretical guidance for the rational design of highly efficient Mn-based catalysts in the CO-SCR reaction for industrial applications.
Funder
National Natural Science Foundation of China
Research Foundation for Advanced Talents of Beijing Technology and Business University
Graduate Research Ability Enhancement Program of Beijing Technology and Business University
Shccig-Qinling Program