Electrocatalytic Hydrogen Evolution Reaction of Cobalt Triaryl Corrole Bearing Nitro Group

Author:

Zeng Jie1,Cao Xu-You1,Xu Shi-Yin1,Qiu Yi-Feng1,Chen Jun-Ying1,Si Li-Ping12,Liu Hai-Yang1ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China

2. School of Materials Science and Energy, Foshan University, Foshan 528000, China

Abstract

The use of non–precious metals for electrocatalytic hydrogen reaction (HER) is particularly important for energy conservation and environmental protection. In this work, three new cobalt corroles containing o−, m−, and p−nitrobenzyl (1, 2, 3) at the meso 10−position of the corrole macrocycle were synthesized, and their electrocatalytic hydrogen evolution reaction in organic and neutral aqueous systems was also investigated. The results show that these three cobalt corroles have significant catalytic HER activity in both systems, and the catalytic efficiency follows 1 > 3 > 2, which indicates that the position of the nitro group can affect the catalytic property of the complexes. In the organic phase, when using trifluoroacetic acid or p−toluenesulfonic acid as the proton source, the electrocatalytic HER may undergo an EECC (E: electron transfer, C: proton coupling) pathway. In a neutral aqueous system, the HER turnover frequency value of 1 is up to 137.4 h−1 at 938 mV overpotential.

Funder

National Natural Science Foundation of China

Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3