Transformation of Light Alkanes into High-Value Aromatics

Author:

Akhtar Muhammad Naseem1

Affiliation:

1. Interdisciplinary Center for Refining and Advanced Chemicals (CRAC), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

Abstract

This research work is focused on the transformation of light alkane (propane) into high-value aromatics using gallo-alumino-silicate catalysts. Two sets of gallo-alumino-silicates were synthesized for this study. In the first set, the ratio of Ga/(Al+Ga) was modified, while the Si/(Al+Ga) ratio was held constant. In the subsequent set, the Si/(Al+Ga) ratio was adjusted, while maintaining a consistent Ga/(Al+Ga) ratio. This approach aimed to directly assess the impact of each ratio on catalyst performance. The comprehensive characterization of all catalysts was conducted using various instrumental techniques, i.e., BET surface area, XRD, NH3-TPD, 27Al, 71Ga and 29Si MAS NMR, and XPS. A gradual reduction in the percentage of crystallinity and rise in meso-surface area was noticed with a rise in Ga/(Al+Ga) ratio. The total acidity (NH3-TPD) demonstrated a decline as the Si/(Al+Ga) ratio increased, attributed to an overall decline in Al3+ or Ga3+ species. The XPS intensity of the Ga 2p3/2 peak rose in correlation with an elevated ratio of Ga/(Al+Ga), suggesting the formation of extra-framework Ga species. The propane conversion, aromatic yield, and aromatization/cracking ratio exhibited an increase with an increasing Ga/(Al+Ga) ratio, reaching an optimum value of 0.46 before declining. Conversely, an appreciable drop in the conversion of propane and yield of aromatics was detected with the rise in Si/(Al+Ga) ratio, attributing to the decline in acidity. The catalyst having a Ga/(Al+Ga) ration of 0.46 exhibited the highest propane conversion and aromatic yield of 83.0% and 55.0% respectively.

Funder

Interdisciplinary Research Center for Refining and Advanced Chemicals

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3