Performance Evaluation and Durability Analysis of NiFeCoOx Catalysts for Alkaline Water Electrolysis in Anion Exchange Membrane Electrolyzers

Author:

Ahmed Khaja Wahab1ORCID,Fowler Michael1ORCID

Affiliation:

1. Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada

Abstract

This study examines the catalytic activity of NiFeCoOx catalysts for anion exchange membrane (AEM) water electrolysis. The catalysts were synthesized with a Ni to Co ratio of 2:1 and Fe content ranges from 2.5 to 12.5 wt%. The catalysts were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The catalytic activity of the NiFeCoOx catalysts was evaluated through linear sweep voltammetry (LSV) and chronoamperometry (CA) experiments for the oxygen evolution reaction (OER). The catalyst with 5% Fe content exhibited the highest catalytic activity, achieving an overpotential of 228 mV at a current density of 10 mA cm−2. Long-term catalyst testing for the OER at 50 mA cm−2 showed stable electrolysis operation for 100 h. The catalyst was further analyzed in an AEM water electrolyzer in a single-cell test, and the NiFeCoOx catalyst with 5% Fe at the anode demonstrated the highest current densities of 1516 mA cm−2 and 1620 mA cm−2 at 55 °C and 70 °C at 2.1 V. The maximum current density of 1880 mA cm−2 was achieved at 2.2 V and 70 °C. The Nyquist plot analysis of electrolysis at 55 °C showed that the NiFeCoOx catalyst with 5% Fe had lower activation resistance compared with the other Fe loadings, indicating enhanced performance. The durability test was performed for 8 h, showing stable AEM water electrolysis with minimum degradation. An overall cell efficiency of 70.5% was achieved for the operation carried out at a higher current density of 0.8 A cm−2.

Funder

Department of Chemical Engineering at the University of Waterloo, Canada Research Chair Tier I—Zero-emission Vehicles and Hydrogen Energy System

The Natural Sciences and Engineering Research Council of Canada (NSERC), Discovery Grants Program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3