Synthesis and Characterization of CoxOy–MnCO3 and CoxOy–Mn2O3 Catalysts: A Comparative Catalytic Assessment Towards the Aerial Oxidation of Various Kinds of Alcohols

Author:

Alduhaish OsamahORCID,Adil Syed FarooqORCID,Assal Mohamed E.,Shaik Mohammed RafiORCID,Kuniyil MufsirORCID,Manqari Khalid M.,Sekou Doumbia,Khan MujeebORCID,Khan AslamORCID,Dewidar Ahmed Z.,Al-Warthan Abdulrahman,Siddiqui Mohammed Rafiq H.ORCID

Abstract

CoxOy–manganese carbonate (X%)(CoxOy–MnCO3 catalysts (X = 1–7)) were synthesized via a straightforward co-precipitation strategy followed by calcination at 300 °C. Upon calcination at 500 °C, these were transformed to CoxOy–dimanganese trioxide i.e., (X%)CoxOy–Mn2O3. A relative catalytic evaluation was conducted to compare the catalytic efficiency of the two prepared catalysts for aerial oxidation of benzyl alcohol (BzOH) to benzaldehyde (BzH) using O2 molecule as a clean oxidant without utilizing any additives or alkalis. Amongst the different percentages of doping with CoxOy (0–7% wt./wt.) on MnCO3 support, the (1%)CoxOy–MnCO3 catalyst exhibited the highest catalytic activity. The influence of catalyst loading, calcination temperature, reaction time, and temperature and catalyst dosage was thoroughly assessed to find the optimum conditions of oxidation of benzyl alcohol (BzOH) for getting the highest catalytic efficiency. The (1%)CoxOy–MnCO3 catalyst which calcined at 300 °C displayed the best effectiveness and possessed the largest specific surface area i.e., 108.4 m2/g, which suggested that the calcination process and specific surface area play a vital role in this transformation. A 100% conversion of BzOH along with BzH selectivity >99% was achieved after just 20 min. Notably, the attained specific activity was found to be considerably larger than the previously-reported cobalt-containing catalysts for this transformation. The scope of this oxidation reaction was expanded to various alcohols containing aromatic, aliphatic, allylic, and heterocyclic alcohols without any further oxidation i.e., carboxylic acid formation. The scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and Brunauer–Emmett–Teller (BET) specific surface area analytical techniques were used to characterize the prepared catalysts. The obtained catalyst could be easily regenerated and reused for six consecutive runs without substantial decline in its efficiency.

Funder

Deanship of Scientific Research, King Saud University

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3