Robotic Medtronic Hugo™ RAS System Is Now Reality: Introduction to a New Simulation Platform for Training Residents

Author:

Cacciatore Loris1,Costantini Manuela2,Tedesco Francesco1,Prata Francesco1ORCID,Machiella Fabio1,Iannuzzi Andrea1ORCID,Ragusa Alberto1ORCID,Deanesi Noemi1,Qaddourah Yussef Rashed1,Brassetti Aldo2ORCID,Anceschi Umberto2ORCID,Bove Alfredo M.2,Testa Antonio1ORCID,Simone Giuseppe2ORCID,Scarpa Roberto Mario1,Esperto Francesco1ORCID,Papalia Rocco1ORCID

Affiliation:

1. Department of Urology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy

2. Department of Urology, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy

Abstract

The use of robotic surgery (RS) in urology has grown exponentially in the last decade, but RS training has lagged behind. The launch of new robotic platforms has paved the way for the creation of innovative robotics training systems. The aim of our study is to test the new training system from Hugo™ RAS System–Medtronic. Between July 2020 and September 2022, a total of 44 residents from urology, gynaecology and general surgery at our institution participated in advanced robotic simulation training using the Hugo™ RAS simulator. Information about sex, age, year of residency, hours spent playing video games, laparoscopic or robotic exposure and interest in robotics (90.9% declared an interest in robotics) was collected. The training program involved three robotic exercises, and the residents performed these exercises under the guidance of a robotics tutor. The residents’ performance was assessed based on five parameters: timing, range of motion, panoramic view, conflict of instruments and exercise completion. Their performance was evaluated according to an objective Hugo system form and a subjective assessment by the tutor. After completing the training, the residents completed a Likert scale questionnaire to gauge their overall satisfaction. The rate of the residents’ improvement in almost all parameters of the three exercises between the first and the last attempts was statistically significant (p < 0.02), indicating significant progress in the residents’ robotic surgical skills during the training. The mean overall satisfaction score ± standard deviation (SD) was 9.4 ± 1.2, signifying a high level of satisfaction among the residents with the training program. In conclusion, these findings suggest that the training program utilizing the Hugo™ RAS System is effective in enhancing robotic surgical skills among residents and holds promise for the development of standardized robotics training programs in various surgical specialties.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3