Bias Reduction News Recommendation System

Author:

Raza Shaina1ORCID

Affiliation:

1. Department of Computer Science, Toronto Metropolitan University, 350 Victoria St, Toronto, ON M5B 2K3, Canada

Abstract

News recommender systems (NRS) are crucial for helping users navigate the vast amount of content available online. However, traditional NRS often suffer from biases that lead to a narrow and unfair distribution of exposure across news items. In this paper, we propose a novel approach, the Contextual-Dual Bias Reduction Recommendation System (C-DBRRS), which leverages Long Short-Term Memory (LSTM) networks optimized with a multi-objective function to balance accuracy and diversity. We conducted experiments on two real-world news recommendation datasets and the results indicate that our approach outperforms the baseline methods, and achieves higher accuracy while promoting a fair and balanced distribution of recommendations. This work contributes to the development of a fair and responsible recommendation system.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3