Abstract
Coatings in a Zr-Mo-Si-B-N system were deposited by the magnetron sputtering of ZrB2-MoSi2 targets in argon and nitrogen. The structure of the coatings was investigated using scanning electron microscopy, X-ray diffraction, energy-dispersive spectroscopy, and glow-discharge optical emission spectroscopy. Mechanical and tribological properties were measured using nanoindentation and pin-on-disc testing. Oxidation resistance and oxidation kinetics were estimated via annealing in air at 1000–1500 °C and precision weight measurements. We found that the coatings deposited in Ar demonstrate a superior combination of properties, including hardness of 36 GPa, elastic recovery of 84%, a friction coefficient of 0.6, and oxidation resistance at temperatures up to 1200 °C. High oxidation resistance is realized due to the formation of the protective (SiO2 + ZrO2)/SiO2 oxide layer, which inhibits the diffusion of oxygen into the coating.
Funder
Ministry of Science and Higher Education of the Russian Federation
Subject
General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献