BAG-DSM: A Method for Generating Alternatives for Hierarchical Multi-Attribute Decision Models Using Bayesian Optimization

Author:

Gjoreski MartinORCID,Kuzmanovski Vladimir,Bohanec MarkoORCID

Abstract

Multi-attribute decision analysis is an approach to decision support in which decision alternatives are evaluated by multi-criteria models. An advanced feature of decision support models is the possibility to search for new alternatives that satisfy certain conditions. This task is important for practical decision support; however, the related work on generating alternatives for qualitative multi-attribute decision models is quite scarce. In this paper, we introduce Bayesian Alternative Generator for Decision Support Models (BAG-DSM), a method to address the problem of generating alternatives. More specifically, given a multi-attribute hierarchical model and an alternative representing the initial state, the goal is to generate alternatives that demand the least change in the provided alternative to obtain a desirable outcome. The brute force approach has exponential time complexity and has prohibitively long execution times, even for moderately sized models. BAG-DSM avoids these problems by using a Bayesian optimization approach adapted to qualitative DEX models. BAG-DSM was extensively evaluated and compared to a baseline method on 43 different DEX decision models with varying complexity, e.g., different depth and attribute importance. The comparison was performed with respect to: the time to obtain the first appropriate alternative, the number of generated alternatives, and the number of attribute changes required to reach the generated alternatives. BAG-DSM outperforms the baseline in all of the experiments by a large margin. Additionally, the evaluation confirms BAG-DSM’s suitability for the task, i.e., on average, it generates at least one appropriate alternative within two seconds. The relation between the depth of the multi-attribute hierarchical models—a parameter that increases the search space exponentially—and the time to obtaining the first appropriate alternative was linear and not exponential, by which BAG-DSM’s scalability is empirically confirmed.

Funder

Slovenian Research Agency

Slovenian Ministry of Education, Science and Sport

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference36 articles.

1. Decision Support Systems: Concepts and Resources for Managers;Power,2002

2. Decision Support Systems and Intelligent Systems;Turban,2005

3. Decision Support and Data Warehouse Systems;Mallach,2000

4. Ex ante assessment of the sustainability of alternative cropping systems: implications for using multi-criteria decision-aid methods. A review

5. MASC, a qualitative multi-attribute decision model for ex ante assessment of the sustainability of cropping systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey on Optimization Methods in Business Information Systems;2023 24th International Conference on Control Systems and Computer Science (CSCS);2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3