A Gate-to-Gate Life Cycle Assessment for the CO2-EOR Operations at Farnsworth Unit (FWU)

Author:

Morgan AnthonyORCID,Grigg Reid,Ampomah William

Abstract

Greenhouse gas (GHG) emissions related to the Farnsworth Unit’s (FWU) carbon dioxide enhanced oil recovery (CO2-EOR) operations were accounted for through a gate-to-gate life cycle assessment (LCA) for a period of about 10 years, since start of injection to 2020, and predictions of 18 additional years of the CO2-EOR operation were made. The CO2 source for the FWU project has been 100% anthropogenically derived from the exhaust of an ethanol plant and a fertilizer plant. A cumulative amount of 5.25 × 106 tonnes of oil has been recovered through the injection of 1.64 × 106 tonnes of purchased CO2, of which 92% was stored during the 10-year period. An LCA analysis conducted on the various unit emissions of the FWU process yielded a net negative (positive storage) of 1.31 × 106 tonnes of CO2 equivalent, representing 79% of purchased CO2. An optimized 18-year forecasted analysis estimated 86% storage of the forecasted 3.21 × 106 tonnes of purchased CO2 with an equivalent 2.90 × 106 tonnes of crude oil produced by 2038. Major contributors to emissions were flaring/venting and energy usage for equipment. Improvements on the energy efficiency of equipment would reduce emissions further but this could be challenging. Improvement of injection capacity and elimination of venting/flaring or fugitive gas are methods more likely to be utilized for reducing net emissions and are the cases used for the optimized scenario in this work. This LCA illustrated the potential for the CO2-EOR operations in the FWU to store more CO2 with minimal emissions.

Funder

U.S. Department of Energy's (DOE) National Energy Technology Laboratory

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3