Anachronic Fruit Traits and Natural History Suggest Extinct Megafauna Herbivores as the Dispersers of an Endangered Tree

Author:

Muñoz-Concha DiegoORCID,Muñoz Karla,Loayza Andrea P.ORCID

Abstract

Megafaunal seed dispersal syndrome refers to a group of traits attributed to the evolution of plants in the presence of large mammals. Present-day plants that bear these traits in areas where megafauna are absent are presumed to represent anachronic dispersal systems. Gomortega keule is an endangered tree species from a monotypic family (Gomortegaceae), endemic to Chile. Its fruit traits suggest adaptation to seed dispersal by large vertebrates; however, none are present today along its area of distribution. Here, we conducted a detailed revision on the fruit morphology of G. keule to examine whether its fruit traits fit a megafaunal dispersal syndrome. Additionally, we examined the fruit processing behavior of large domestic and captive wild animals fed with G. keule fruits, and its effect on germination. G. keule fruits had traits consistent with those of a Type 1 megafaunal fruit. Compared to intact, whole stones, seed germination probabilities decreased when fruits were handled by animals, suggesting that the seed was damaged during mastication and/or ingestion. Moreover, results from our feeding trials with elephants may also imply low efficiency of extinct gomphotheres as seed dispersers of this species. Our results also suggest that although domestic animals may disperse G. keule, it is unlikely that at present they can substitute the services of its original dispersers. Further investigation on seedling survival, local livestock management and forest management practices may help reinstate sexual regeneration in G. keule. Finally, integrating observations on fruit ecology and local people’s knowledge with experimental data enriches our species-centered approach and may help to address regeneration problems in other endangered plants.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3