Photosynthetic Responses of Canola to Exogenous Application or Endogenous Overproduction of 5-Aminolevulinic Acid (ALA) under Various Nitrogen Levels

Author:

Feng Xinxin,An Yuyan,Gao Jingjing,Wang Liangju

Abstract

Limited data are available on the effects of 5-aminolevulinic acid (ALA) on plant photosynthesis in relation to the nitrogen (N) level. In this study, we investigate photosynthetic responses to ALA in canola plants (Brassica napus L.). We used wild-type plants without ALA addition (controls), wild-type plants with exogenous ALA application, and transgenic plants that endogenously overproduced ALA. The plants were grown hydroponically in nutrient solutions with low, middle, and high concentrations of N. Our results indicate that plants in both treatment groups had higher chlorophyll contents and net photosynthetic rates and lower intracellular CO2 concentrations in the leaves, as compared to controls. Furthermore, simultaneous measurement of prompt chlorophyll fluorescence and modulated 820-nm reflections showed that the active photosystem II (PS II) reaction centers, electron transfer capacity, and photosystem I (PS I) activity were all higher in treated plants than controls at all N levels; however, the responses of some photochemical processes to ALA were significantly affected by the N level. For example, under low N conditions only, a negative ΔK peak appeared in the prompt chlorophyll fluorescence curve, indicating a protective effect of ALA on electron donation via activation of the oxygen-evolving complex. Taken together, our findings suggest that ALA contributes to the promotion of photosynthesis by regulating photosynthetic electron transport under various N levels. These findings may provide a new strategy for improving photosynthesis in crops grown in N-poor conditions or reduced N-fertilization requirements.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3