Thermodynamic Analysis and Improvement Potential of Helium Closed Cycle Gas Turbine Power Plant at Four Loads

Author:

Mrzljak Vedran1ORCID,Poljak Igor2ORCID,Jelić Maro3,Prpić-Oršić Jasna1

Affiliation:

1. Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia

2. Department of Maritime Sciences, University of Zadar, Mihovila Pavlinovića 1, 23000 Zadar, Croatia

3. Maritime Department, University of Dubrovnik, Ćira Carića 4, 20000 Dubrovnik, Croatia

Abstract

This paper presents thermodynamic and improvement potential analyses of a helium closed-cycle gas turbine power plant (Oberhausen II) and dominant plant components at four loads. DESIGN LOAD represents optimal operating conditions that cannot be obtained in exploitation but can be used as a guideline for further improvements. In real plant exploitation, the highest plant efficiency is obtained at NOMINAL LOAD (31.27%). Considering all observed components, the regenerator (helium-helium heat exchanger) is the most sensitive to the ambient temperature change. An exact comparison shows that the efficiency decrease of an open-cycle gas turbine power plant during load decrease is approximately two and a half or more times higher in comparison to a closed-cycle gas turbine power plant. Plant improvement potential related to all turbomachines leads to the conclusion that further improvement of the most efficient turbomachine (High Pressure Turbine—HPT) will increase whole plant efficiency more than improvement of any other turbomachine. An increase in the HPT isentropic efficiency of 1% will result in an average increase in whole plant efficiency of more than 0.35% at all loads during plant exploitation. In the final part of this research, it is investigated whether the additional heater involvement in the plant operation results in a satisfactory increase in power plant efficiency. It is concluded that in real exploitation conditions (by assuming a reasonable helium pressure drop of 5% in the additional heater), an additional heating process cannot be an improvement possibility for the Oberhausen II power plant.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3