Abstract
In previous articles, we presented a derivation of Born’s rule and unitary transforms in Quantum Mechanics (QM), from a simple set of axioms built upon a physical phenomenology of quantization—physically, the structure of QM results of an interplay between the quantized number of “modalities” accessible to a quantum system, and the continuum of “contexts” required to define these modalities. In the present article, we provide a unified picture of quantum measurements within our approach, and justify further the role of the system–context dichotomy, and of quantum interferences. We also discuss links with stochastic quantum thermodynamics, and with algebraic quantum theory.
Subject
General Physics and Astronomy
Reference36 articles.
1. Quantum Computation & Quantum Information;Nielsen,2010
2. Mathematical Foundations of Quantum Mechanics;Von Neumann,1955
3. Quantum mechanics and reality
4. Quantum‐mechanics debate
5. Do We Really Understand Quantum Mechanics?;Laloë,2012
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献