The Recent Advancement in Unmanned Aerial Vehicle Tracking Antenna: A Review

Author:

Kelechi Anabi Hilary,Alsharif Mohammed H.ORCID,Oluwole Damilare Abdulbasit,Achimugu Philip,Ubadike Osichinaka,Nebhen Jamel,Aaron-Anthony AtayeroORCID,Uthansakul PeerapongORCID

Abstract

Unmanned aerial vehicle (UAV) antenna tracking system is an electromechanical component designed to track and steer the signal beams from the ground control station (GCS) to the airborne platform for optimum signal alignment. In a tracking system, an antenna continuously tracks a moving target and records their position. A UAV tracking antenna system is susceptible to signal loss if omnidirectional antenna is deployed as the preferred design. Therefore, to achieve longer UAV distance communication, there is a need for directional high gain antenna. From design principle, directional antennas are known to focus their signal energy in a particular direction viewed from their radiation pattern which is concentrated in a particular azimuth direction. Unfortunately, a directional antenna is limited by angle, thus, it must always be directed to the target. The other limitation of a UAV mechanical beam steering system is that the system is expensive to maintain and with low reliability. To solve this problem, we are proposing the use of MIMO technology as a readily available technology for UAV beyond line of sight technology. Although UAV antenna tracking is domiciled in the mechanical beam steering arrangement, this study shows that this native technology could be usurped by MIMO beam forming.

Funder

This work was supported by SUT Research and Development Funds and by Thailand Science Research and Innovation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Optimized Design Method of Required Specification for the Downsizing/Lightweight of MUM-T Mounted Antenna;The Journal of Korean Institute of Information Technology;2024-08-31

2. Low Cross-Polarization High-Isolation 2-Element MIMO Antenna for Unmanned Aerial Vehicle;AEU - International Journal of Electronics and Communications;2024-04

3. Adaptive elliptic trajectory-based received signal strength indicator antenna tracking algorithm;Transactions of the Institute of Measurement and Control;2023-12-06

4. Multi-Beam Satellite Seeking and Acquisition Method for Satcom-on-the-Move Array Antenna on a High Maneuverability Carrier;Applied Sciences;2023-10-28

5. A Compact Multi-Band MIMO Antenna for UAV Communications;2023 International Applied Computational Electromagnetics Society Symposium (ACES-China);2023-08-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3