Strategies for the Efficient Estimation of Soil Moisture through Spectroscopy: Sensitive Wavelength Algorithm, Spectral Resampling and Signal-to-Noise Ratio Selection

Author:

Yuan Jing,Yu Bo,Yan Changxiang,Zhang Junqiang,Ding Ning,Dong Youzhi

Abstract

It is found that the remote sensing parameters such as spectral range, spectral resolution and signal-to-noise ratio directly affect the estimation accuracy of soil moisture content. However, the lack of research on the relationship between the parameters and estimation accuracy restricts the prolongation of application. Therefore, this study took the demand for this application as the foothold for developing spectrometry. Firstly, a method based on sensitivity analysis of soil radiative transfer model-successive projection algorithm (SA-SPA) was proposed to select sensitive wavelengths. Then, the spectral resampling method was used to select the best spectral resolution in the corresponding sensitive wavelengths. Finally, the noise-free spectral data simulated by the soil radiative transfer model was added with Gaussian random noise to change the signal-to-noise ratio, so as to explore the influence of signal-to-noise ratio on the estimation accuracy. The research results show that the estimation accuracy obtained through the SA-SPA (RMSEP < 12.1 g kg−1) is generally superior to that from full-spectrum data (RMSEP < 14 g kg−1). At selected sensitive wavelengths, the best spectral resolution is 34 nm, and the applicable signal-to-noise ratio ranges from 150 to 350. This study provides technical support for the efficient estimation of soil moisture content and the development of spectrometry, which comprehensively considers the common influence of spectral range, spectral resolution and signal-to-noise ratio on the estimation accuracy of soil moisture content.

Funder

National Key Research and Development Program of China

Technology Development Program of Jilin Province, China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3