Feature Importance Analysis for Postural Deformity Detection System Using Explainable Predictive Modeling Technique

Author:

Kim Kwang HyeonORCID,Choi Woo-Jin,Sohn Moon-JunORCID

Abstract

This study aimed to analyze feature importance by applying explainable artificial intelligence (XAI) to postural deformity parameters extracted from a computer vision-based posture analysis system (CVPAS). Overall, 140 participants were screened for CVPAS and enrolled. The main data analyzed were shoulder height difference (SHD), wrist height difference (WHD), and pelvic height difference (PHD) extracted using a CVPAS. Standing X-ray imaging and radiographic assessments were performed. Predictive modeling was implemented with XGBoost, random forest regressor, and logistic regression using XAI techniques for global and local feature analyses. Correlation analysis was performed between radiographic assessment and AI evaluation for PHD, SHD, and Cobb angle. Main global features affecting scoliosis were analyzed in the order of importance for PHD (0.18) and ankle height difference (0.06) in predictive modeling. Outstanding local features were PHD, WHD, and KHD that predominantly contributed to the increase in the probability of scoliosis, and the prediction probability of scoliosis was 94%. When the PHD was >3 mm, the probability of scoliosis increased sharply to 85.3%. The paired t-test result for AI and radiographic assessments showed that the SHD, Cobb angle, and scoliosis probability were significant (p < 0.05). Feature importance analysis using XAI to postural deformity parameters extracted from a CVPAS is a useful clinical decision support system for the early detection of posture deformities. PHD was a major parameter for both global and local analyses, and 3 mm was a threshold for significantly increasing the probability of local interpretation of each participant and the prediction of postural deformation, which leads to the prediction of participant-specific scoliosis.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CHUNAV: Analyzing Hindi Hate Speech and Targeted Groups in Indian Election Discourse;ACM Transactions on Asian and Low-Resource Language Information Processing;2024-05-16

2. Systematic Literature Review;Advances in Medical Technologies and Clinical Practice;2022-11-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3