Initialisation Approaches for Population-Based Metaheuristic Algorithms: A Comprehensive Review

Author:

Agushaka Jeffrey O.,Ezugwu Absalom E.ORCID

Abstract

A situation where the set of initial solutions lies near the position of the true optimality (most favourable or desirable solution) by chance can increase the probability of finding the true optimality and significantly reduce the search efforts. In optimisation problems, the location of the global optimum solution is unknown a priori, and initialisation is a stochastic process. In addition, the population size is equally important; if there are problems with high dimensions, a small population size may lie sparsely in unpromising regions, and may return suboptimal solutions with bias. In addition, the different distributions used as position vectors for the initial population may have different sampling emphasis; hence, different degrees of diversity. The initialisation control parameters of population-based metaheuristic algorithms play a significant role in improving the performance of the algorithms. Researchers have identified this significance, and they have put much effort into finding various distribution schemes that will enhance the diversity of the initial populations of the algorithms, and obtain the correct balance of the population size and number of iterations which will guarantee optimal solutions for a given problem set. Despite the affirmation of the role initialisation plays, to our knowledge few studies or surveys have been conducted on this subject area. Therefore, this paper presents a comprehensive survey of different initialisation schemes to improve the quality of solutions obtained by most metaheuristic optimisers for a given problem set. Popular schemes used to improve the diversity of the population can be categorised into random numbers, quasirandom sequences, chaos theory, probability distributions, hybrids of other heuristic or metaheuristic algorithms, Lévy, and others. We discuss the different levels of success of these schemes and identify their limitations. Similarly, we identify gaps and present useful insights for future research directions. Finally, we present a comparison of the effect of population size, the maximum number of iterations, and ten (10) different initialisation methods on the performance of three (3) population-based metaheuristic optimizers: bat algorithm (BA), Grey Wolf Optimizer (GWO), and butterfly optimization algorithm (BOA).

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3