Optimization of Copper Electroforming Process Parameters Based on Double Hidden Layer BP Neural Network

Author:

Ji Feng,Chen Chao,Zhao Yongfei,Min Byungwon

Abstract

In order to optimize the pulse electroforming copper process, a double hidden layer BP (back propagation) neural network was constructed. Through sample training, the mapping relationship between electroforming copper process conditions and target properties was accurately established, and the prediction of microhardness and tensile strength of the electroforming layer in the pulse electroforming copper process was realized. The predicted results were verified by electrodeposition copper test in copper pyrophosphate solution system with pulse power supply. The results show that the microhardness and tensile strength of copper layer predicted by “3-4-3-2” structure double hidden layer neural network are very close to the experimental values, and the relative error is less than 2.82%. In the parameter range, the microhardness of copper layer is between 100.3~205.6 MPa and the tensile strength is between 165~485 MPa. When the microhardness and tensile strength are optimal, the corresponding range of optimal parameters are as follows: current density is 2–3 A·dm−2, pulse frequency is 1.5–2 kHz and pulse duty cycle is 10–20%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3