Optimization and Operational Analysis of Domestic Greywater Treatment by Electrocoagulation Filtration Using Response Surface Methodology

Author:

Ansari KhalidORCID,Shrikhande Avinash,Malik Mohammad,Alahmadi AhmadORCID,Alwetaishi MamdoohORCID,Alzaed Ali,Elbeltagi AhmedORCID

Abstract

Greywater is the most sustainable option to address the growing need for fresh water. This study aimed to identify the optimal operation variables of an electro-coagulation filtration (ECF) system for treating domestic greywater, using different conditions (e.g., different electrode combinations (Al-Fe-Al-Fe), initial pH (6.8–8.4), operating time (10–60 min), and voltage (6–24 volts)). A statistical data analysis was performed to evaluate the experimental conditions for modeling the chemical oxygen demand (COD), the total dissolved solids (TDSs), turbidity, and chloride removal effectiveness, almost ranging from (85 to 94%), respectively, with energy consumption using the response surface methodology (RSM) and the ANOVA test. When comparing the experimental and predicted model values, it was proved that the model fairly describes the experimental values with the R2 values determined >0.99 for COD, TDSs, turbidity, chloride, and energy consumption, suggesting a regression sustainability of the model. The sludge properties were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and FTIR spectroscopy, which indicated the removal of organic matter during the ECF, similar in composition, independently of the different applied voltage values used. The results of this study suggest the ECF significantly reduces the pollutants load in greywater, showing the aluminum-iron-based electrodes as a viable option to treat greywater with optimal operational costs ranging from (0.12 to 0.4) US$ m−3 under different voltage conditions and parameters. This study establishes a path for greywater treatment technology that is economical and environmentally responsible for wastewater management that leads to sustainability.

Funder

Prince Sultan University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3