Abstract
Soft polymeric gels are susceptible to buckling-induced instabilities due to their great compliance to surface deformations. The instability patterns at soft interfaces have great potential in engineering functional materials with unique surface properties. In this work, we systematically investigated how swelling-induced instability patterns effectively improved the adhesive properties of soft polydimethylsiloxane (PDMS) gels. We directly imaged the formations of the surface instability features during the relaxation process of a swollen gel substrate. The features were found to greatly increase the adhesion energy of soft gels across multiple length scales, and the adhesion enhancement was associated with the variations of contact lines both inside the contact region and along the contact periphery. We expect that these studies of instability patterns due to swelling will further benefit the design of functional interfaces in various engineering applications.
Funder
Hong Kong Research Grants Council
Subject
General Materials Science