Effect of Vacuum Heat Treatment on the Element Diffusion Behavior and Corrosion Resistance of Al2O3-3wt.%TiO2 Coating of Q235 Steel

Author:

Ma YulinORCID,Liu Guang,Wang Xinyu,Zhang Xupeng,Zhang Jun,Cheng Jun

Abstract

In this study, we address the effect of vacuum heat treatment on the morphology of Al2O3-3wt.%TiO2 coating, element diffusion behavior, coating hardness, and corrosion resistance. The pores, cracks, and non-liquefied particles on the as-heat treated coating surface of the vacuum-heat-treated coating were observed and compared with the as-sprayed coating using a scanning electron microscope. The diffusion behavior of the elements in the coating was demonstrated by using a line scanning of a cross-section of the coating. Hardness and corrosion-resistance test results were used to judge the effect of a vacuum heat treatment on the coating. The research results show that compared with atmospheric heat treatment, the vacuum heat treatment had less effect on the pores, cracks, and non-liquefied particles on the surface of the coating. However, in the absence of new oxide formation, the pores and cracks in the cross-section of the coating were significantly improved by the vacuum heat treatment. The surface hardness and corrosion resistance of the coating were significantly improved. The crack defects were eliminated, and the uniformity of TiO2 distribution was improved, which are the main factors that improved the coating performance after vacuum heat treatment. The combination of the coating and the substrate is strengthened, and an Al2O3 and TiO2 interdiffusion zone is formed when the coating undergoes vacuum heat treatment, which is the main mechanism improving the performance of the AT3 coating.

Funder

Liaoning Province Doctoral Research Startup Fund Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3