Highly Transparent, Flexible and Conductive CNF/AgNW Paper for Paper Electronics

Author:

Li Ren’ai,Zhang Kaili,Chen Guangxue

Abstract

Conductive paper has the advantages of being low-cost, lightweight, disposable, flexible, and foldable, giving it promising potential in future electronics. However, mainstream conductive papers are opaque and rigid, which seriously affect the wide application of conductive paper. In this paper, we demonstrate a highly transparent, flexible, and conductive paper, fabricated by mixing cellulose nanofibers (CNFs) with silver nanowires (AgNWs) and then plasticizing with choline chloride/urea solvent. The as-prepared CNF/AgNW paper showed high transparency (~90% transmittance) and flexibility (~27% strain), and low sheet resistance (56 Ω/sq). Moreover, the resistance change of CNF/AgNW paper increased only ~1.1% after 3000 bending−unbending cycles under a 150° large angle, implying a long working life and stability. In view of this, our methodology has the potential to open a new powerful route for fabrication of paper-based green electronics.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3