Assessment of Municipal Waste Forecasting Methods in Poland Considering Socioeconomic Aspects

Author:

Nęcka Krzysztof1ORCID,Szul Tomasz1ORCID,Piotrowska-Woroniak Joanna2ORCID,Pancerz Krzysztof3ORCID

Affiliation:

1. Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116 B, 30-149 Krakow, Poland

2. HVAC Department, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland

3. Institute of Philosophy, The John Paul II Catholic University of Lublin, Al. Racławickie 14, 20-950 Lublin, Poland

Abstract

As a public service, municipal waste management at the local and regional levels should be carried out in an environmentally friendly and economically justified manner. Information on the quantity and composition of generated municipal waste is essential for planning activities related to the implementation and optimization of the process. There is a need for reliable forecasts regarding the amount of waste generated in each area. Due to the variability in the waste accumulation rate, this task is difficult to accomplish, especially at the local level. The literature contains many reports on this issue, but there is a lack of studies indicating the preferred method depending on the independent variables, the complexity of the algorithm, the time of implementation, and the quality of the forecast. The results concerning the quality of forecasting methods are difficult to compare due to the use of different sets of independent variables, forecast horizons, and quality assessment indicators. This paper compares the effectiveness of selected forecasting models in predicting the amount of municipal waste collection generated in Polish municipalities. The authors compared nine methods, including artificial neural networks (ANNs), support regression trees (SRTs), rough set theory (RST), multivariate adaptive regression splines (MARS), and random regression forests (RRFs). The analysis was based on 31 socioeconomic indicators for 2451 municipalities in Poland. The Boruta algorithm was used to select significant variables and eliminate those with little impact on forecasting. The quality of the forecasts was evaluated using eight indicators, such as the absolute percentage error (MAPE), mean absolute error (MAE), and coefficient of determination (R2). A comprehensive evaluation of the forecasting models was carried out using the APEKS method. An analysis of the results showed that the best forecasting methods depended on the set of independent variables and the evaluation criteria adopted. Waste management expenditures, the levels of sanitation and housing infrastructure, and the cost-effectiveness of waste management services were key factors influencing the amount of municipal waste. Additionally, this research indicated that adding more variables does not always improve the quality of forecasts, highlighting the importance of proper selection. The use of a variable selection algorithm, combined with the consideration of the impact of various socioeconomic factors on municipal waste generation, can significantly improve the quality of forecasts. The SRT, CHAID, and MARS methods can become valuable tools for predicting municipal waste volumes, which, in turn, will help to improve waste management system.

Funder

Ministry of Science and Higher Education of the Republic of Poland

Publisher

MDPI AG

Reference55 articles.

1. The effect of biological methods for MSW treatment on the physicochemical, microbiological and phytotoxic properties of used biofilter bed media;Famielec;Waste Manag.,2024

2. Reviewing the influence of sociocultural, environmental and economic variables to forecast municipal solid waste (MSW) generation;Kahhat;Sustain. Prod. Consum.,2022

3. Artificial intelligence applications in solid waste management: A systematic research review;Abdallah;Waste Manag.,2020

4. Ocena potencjału energetycznego odpadów komunalnych w zależności od zastosowanej technologii ich utylizacji;Klimek;Nafta-Gaz,2013

5. Wybór technologii termicznego przekształcania odpadów komunalnych;Wielgosinski;Nowa Energ.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3