Production of Sustainable Liquid Fuels

Author:

Ormond Nathan1,Kamel Dina2,Lima Sergio3ORCID,Saha Basudeb1ORCID

Affiliation:

1. School of Engineering, Lancaster University, Lancaster LA1 4YW, UK

2. Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK

3. Green Fuels Research, B21 Gloucestershire Science & Technology Park, Berkeley GL13 9FB, UK

Abstract

As the world aims to address the UN Sustainable Development Goals (SDGs), it is becoming more urgent for heavy transportation sectors, such as shipping and aviation, to decarbonise in an economically feasible way. This review paper investigates the potential fuels of the future and their capability to mitigate the carbon footprint when other technologies fail to do so. This review looks at the technologies available today, including, primarily, transesterification, hydrocracking, and selective deoxygenation. It also investigates the potential of fish waste from the salmon industry as a fuel blend stock. From this, various kinetic models are investigated to find a suitable base for simulating the production and economics of biodiesel (i.e., fatty acid alkyl esters) and renewable diesel production from fish waste. Whilst most waste-oil-derived biofuels are traditionally produced using transesterification, hydrotreating looks to be a promising method to produce drop-in biofuels, which can be blended with conventional petroleum fuels without any volume percentage limitation. Using hydrotreatment, it is possible to produce renewable diesel in a few steps, and the final liquid product mixture includes paraffins, i.e., linear, branched, and cyclo-alkanes, with fuel properties in compliance with international fuel standards. There is a wide range of theoretical models based on the hydrodeoxygenation of fatty acids as well as a clear economic analysis that a model could be based on.

Funder

MarRI-UK initiative supported by the UK Department for Transport

Publisher

MDPI AG

Reference50 articles.

1. International Energy Agency (2023). CO2 Emissions in 2022, IEA.

2. International Energy Agency (2023). Biofuels, IEA.

3. Gross, S. (2020). The Challenge of Decarbonizing Heavy Transport, Brookings.

4. Clean Energy Institute (2023). Lithium-Ion Battery, Clean Energy Institute.

5. Performance Metrics Required of Next-Generation Batteries to Electrify Commercial Aircraft;Bills;ACS Energy Lett.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3