Dynamics of Semiconductor Laser Subject to Optical Feedback with Linewidth Enhancement Factor and Spontaneous Emission Factor

Author:

Abdulrhmann Salah1ORCID,Hakami Jabir1

Affiliation:

1. Department of Physics, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia

Abstract

In this article, the dependence of the operation states, dynamics, and noise of laser diodes (LD) with external optical feedback (OFB) on the linewidth enhancement factor (LEF) and spontaneous emission factor (SEF) have been investigated. We systematically studied the classification of the laser dynamics based on the bifurcation diagrams (BDs) of the photon numbers and the relative intensity noise (RIN) spectra at different levels of OFB, LEF, and SEF. The simulation results show that variations in the LEF and SEF lead to significant changes in the laser operation states and dynamics, which vary from continuous wave (CW), pulsation, and chaos states. The Hopf bifurcation (HB) point moves toward increasing/decreasing OFB intensity by increasing/decreasing the SEF/LEF. The laser state becomes more stable through a wide range of OFB by increasing/decreasing the SEF/LEF. The RIN reduces the solitary laser noise level at higher/lower values of SEF/LEF when the laser is operated under OFB. The relaxation frequency of the laser shifts toward higher values by increasing/decreasing the SEF/LEF through most laser states, and the RIN peak is higher than solitary laser noise by four orders of magnitude, especially in the pulsation regions. In the low-frequency region, the RIN is enhanced from one to two orders by reducing the LEF and SEF through laser states.

Funder

Jazan University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3