Gain-Scheduled Model Predictive Control for Cart–Inverted-Pendulum with Friction and Disturbances

Author:

He Jue1,Li Yongbo1,Wei Ziang2,Huang Zixin23

Affiliation:

1. School of Automation, China University of Geosciences, Wuhan 430074, China

2. School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, China

3. Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430200, China

Abstract

The cart–inverted pendulum system (CIPS) is a typical example of underactuated mechanical systems. For the CIPS with friction and disturbances, a gain-scheduled model predictive control method is proposed to achieve the upright stabilization objective of the single inverted pendulum (SIP) while controlling the cart to reach a desired new position. To this end, first, a dynamic equation of the CIPS with friction and disturbances is formulated based on the Newton–Euler equation. On the basis of the dynamic equation of the CIPS, its motion characteristics and control process are analyzed. Next, the given dynamic equation of the CIPS is linearized to obtain a series of linearized models at seven different pendulum angles. Then, seven model predictive controllers (MPCs) are designed based on the above-linearized models, respectively. Introducing the idea of the gain-schedule, a gain-scheduled MPC (GSMPC) is designed to switch one of these seven MPCs to realize the control objective of the CIPS, according to the actual pendulum angle of the SIP during the control process. Finally, multi-group simulations that consider the friction and disturbances of the CIPS are implemented to demonstrate the effectiveness of the proposed gain-scheduled model predictive control method.

Funder

Hubei Province Nature Science Foundation

Hubei Key Laboratory of Digital Textile Equipment

Hubei Key Laboratory of Intelligent Robot

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3