Characterization and Cellular Toxicity Studies of Commercial Manganese Oxide Nanoparticles

Author:

Johnston Linda J.1ORCID,Du Xiaomei2,Zborowski Andre2,Kennedy David C.1

Affiliation:

1. Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada

2. Energy, Mining and Environment, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada

Abstract

Manganese oxide nanoparticles (MnOx NPs) are finding applications in several environmentally important areas such as farming and energy storage. MnOx NPs span a range of metal oxidation states that open up a wide range of applications in catalysis as well. As a result, it is important to understand how such materials can impact human health through incidental exposure. In this study, we examined a range of commercially available Mn2O3 NPs and compared our characterization data to those supplied by manufacturers. Discrepancies were noted and then measured values were used to assess the biological impact of these materials on three mammalian cell lines—A549, HepG2 and J774A.1 cells. Cell toxicity assays showed that all Mn2O3 particles exhibited cytotoxic effects that may be correlated, at least in part, to the production of reactive oxygen species. All eight nanoforms also activated caspase 3 but not caspase 1, although the magnitude of these changes varied greatly between materials.

Funder

Health Canada

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3