Development of TiO2–CaCO3 Based Composites as an Affordable Building Material for the Photocatalytic Abatement of Hazardous NOx from the Environment

Author:

Kuppusamy Madhan1ORCID,Kim Sun-Woo2ORCID,Lee Kwang-Pill1,Jo Young Jin3,Kim Wha-Jung1ORCID

Affiliation:

1. GOONWORLD Corporate Research Institute, Dong-gu, Daegu 41065, Republic of Korea

2. Department of Chemistry Education, Chosun University, Gwangju 61452, Republic of Korea

3. Korea Conformity Laboratories, Daegu 42994, Republic of Korea

Abstract

This study explores the depollution activity of a photocatalytic cementitious composite comprising various compositions of n-TiO2 and CaCO3. The photocatalytic activity of the CaCO3–TiO2 composite material is assessed for the aqueous photodegradation efficiency of MB dye solution and NOx under UV light exposure. The catalyst CaCO3–TiO2 exhibits the importance of an optimal balance between CaCO3 and n-TiO2 for the highest NOx removal of 60% and MB dye removal of 74.6%. The observed trends in the photodegradation of NOx removal efficiencies suggest a complex interplay between CaCO3 and TiO2 content in the CaCO3–n-TiO2 composite catalysts. This pollutant removal efficiency is attributed to the synergistic effect between CaCO3 and n-TiO2, where a higher percentage of n-TiO2 appeared to enhance the photocatalytic activity. It is recommended that CaCO3–TiO2 photocatalysts are effectiveness in water and air purification, as well as for being cost-effective construction materials.

Funder

Ministry of Public Administration and Security

Ministry of Land Infrastructure and Transport

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3