Magnetic Properties and THz Emission from Co/CoO/Pt and Ni/NiO/Pt Trilayers

Author:

Kanistras Nikolaos1ORCID,Scheuer Laura2,Anyfantis Dimitrios I.3ORCID,Barnasas Alexandros3ORCID,Torosyan Garik4,Beigang René2,Crisan Ovidiu5ORCID,Poulopoulos Panagiotis3ORCID,Papaioannou Evangelos Th.156ORCID

Affiliation:

1. Institute of Physics, Martin Luther University Halle-Wittenberg, Von-Danckelmann Platz 3, 06120 Halle, Germany

2. Fachbereich Physik and Landesforschungszentrum OPTIMAS, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, 67663 Kaiserslautern, Germany

3. Department of Materials Science, School of Natural Sciences, University of Patras, 26504 Patras, Greece

4. Photonik Center Kaiserslautern, 67663 Kaiserslautern, Germany

5. National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania

6. Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Abstract

THz radiation emitted by ferromagnetic/non-magnetic bilayers is a new emergent field in ultra-fast spin physics phenomena with a lot of potential for technological applications in the terahertz (THz) region of the electromagnetic spectrum. The role of antiferromagnetic layers in the THz emission process is being heavily investigated at the moment. In this work, we fabricate trilayers in the form of Co/CoO/Pt and Ni/NiO/Pt with the aim of studying the magnetic properties and probing the role of very thin antiferromagnetic interlayers like NiO and CoO in transporting ultrafast spin current. First, we reveal the static magnetic properties of the samples by using temperature-dependent Squid magnetometry and then we quantify the dynamic properties with the help of ferromagnetic resonance spectroscopy. We show magnetization reversal that has large exchange bias values and we extract enhanced damping values for the trilayers. THz time-domain spectroscopy examines the influence of the antiferromagnetic interlayer in the THz emission, showing that the NiO interlayer in particular is able to transport spin current.

Funder

Romanian Recovery and Resilience Plan PNRR, Pillar III, Component C9-I8

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3