What Happens to Wood after a Tree Is Attacked by a Bark Beetle?

Author:

Hýsek ŠtěpánORCID,Löwe RadimORCID,Turčáni Marek

Abstract

Advancing climate change is affecting the health and vitality of forests in many parts of the world. Europe is currently facing spruce bark beetle outbreaks, which are most often caused by wind disturbances, hot summers, or lack of rainfall and are having a massive economic impact on the forestry sector. The aim of this research article was to summarize current scientific knowledge about the structure and physical and mechanical properties of wood from bark beetle-attacked trees. Spruce stands are attacked by a number of beetles, of which Ips typographus is the most common and widespread in Central Europe. When attacking a tree, bark beetles introduce ophiostomatoid fungi into the tree, which then have a greater effect on the properties of the wood than the beetles themselves. Fungal hyphae grow through the lumina of wood cells and spread between individual cells through pits. Both white rot and brown rot fungi are associated with enzymatic degradation of lignin or holocellulose, which is subsequently reflected in the change of the physical and mechanical properties of wood. Wood-decay fungi that colonize wood after infestation of a tree with bark beetles can cause significant changes in the structure and properties of the wood, and these changes are predominantly negative, in the form of reducing modulus of rupture, modulus of elasticity, discolouration, or, over time, weight loss. In certain specific examples, a reduction in energy consumption for the production of wood particles from beetle-attacked trees, or an increase in surface free energy due to wood infestation by staining fungi in order to achieve better adhesion of paints or glues, can be evaluated positively.

Funder

Národní Agentura pro Zemědělský Výzkum

Česká Zemědělská Univerzita v Praze

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3