A Prediction Method of Ship Motion Based on LSTM Neural Network with Variable Step-Variable Sampling Frequency Characteristics

Author:

Han Chongyang1ORCID,Hu Xiong1

Affiliation:

1. Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China

Abstract

In active heave compensation, in order to realize the smooth control of the heave compensation platform, it is necessary to use the ship motion measurement system to accurately obtain the ship displacement signal, invert the ship displacement signal, and then control the expansion and contraction of the electric cylinder so that the compensation platform remains horizontal. The ship displacement measurement system generally adopts the second integral of the acceleration sensor to obtain the ship displacement signal. During the acquisition process of the ship displacement signal, the quadratic integration process of the acceleration, and the communication process of the output control command, there is a processing lag which makes the error accumulate, resulting in a delay in the measurement of the ship motion. In order to collect the ship motion more accurately and control the heave compensation platform more precisely, this paper proposes a ship motion prediction method based on a variable step-variable sampling frequency characteristic LSTM (Long Short-Term Memory) neural network. First, we use the autocorrelation function algorithm to calculate the inherent delay of the lag in the process of signal acquisition by the measurement system. Secondly, the LSTM neural network is used to predict the inherent delay step of the lagging ship displacement signal. During the prediction process, it is found that the difference in the sampling frequency of the displacement signal will lead to a change in the step of the inherent delay—experiment in the laboratory to verify. By controlling the motion platform to simulate the motion of the ship and using the ship motion measurement system and the laser sensor system to measure the displacement signal of the motion platform synchronously, it is verified that the ship motion measurement system does have an inherent delay. Thirdly, on a sailing ship, ship displacement signals are collected by setting multiple sets of ship motion measurement systems. Finally, multiple sets of sampling frequency and multiple steps are set, and the ship motion is predicted based on the variable step-variable sampling frequency LSTM neural network. It is verified that the prediction accuracy is related to the sampling frequency of the signal collector and the prediction step of the LSTM neural network, which improves the prediction accuracy of the model and the timeliness of ship motion acquisition.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3