Long-Term Variations of Biogenic Elements and Nutritional Status in Daya Bay, Northern South China Sea

Author:

Guo Zhicheng12ORCID,Xiao Yayuan2345,Liu Yong2345ORCID,Wu Peng2345ORCID,Li Chunhou2345

Affiliation:

1. School of Fishery, Zhejiang Ocean University, Zhoushan 316022, China

2. Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China

3. Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province/Sanya Tropical Fisheries Research Institute, Sanya 572018, China

4. Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangzhou 510300, China

5. Guangdong Provincial Key Laboratory of Fishery Ecology Environment, Guangzhou 510300, China

Abstract

This study explored the variations in the characteristics of the trophic structure of Daya Bay island waters over the last four decades based on the survey findings and research data on biogenic elements (dissolved inorganic nitrogen (DIN), NO2−, NO3−, NH4+, PO43−, and SiO32−) in Daya Bay during 1985–2021. At this time, the DIN concentration increased from 21.14 µg·L−1 to 558.42 µg·L−1 (26.41-fold increase), whereas the SiO32− concentration increased by only 3.6-fold. The PO43− concentrations attained a peak in 2004 and experienced a steady decline over the rest of the survey period. The fractions of NH4+, NO3−, and NO2− in DIN changed from 0.45, 0.40, and 0.15 in 1986 to 0.26, 0.74, and 0.003 in 2021, respectively. Overall, the mean values of NH4+, NO3−, and NO2− accounted for 45.2%, 42.5%, and 12.3%, respectively. The N/P(DIN/PO43−) ratio in Daya Bay increased from 28.08 in the 1980s to 51.63 in the 2010s. Meanwhile, the nutrient limitation conditions showed a gradual shift from N-limited to P-limited conditions. According to the nutrient quality index (NQI) analysis, the trophic state level of Daya Bay waters fell into the oligotrophic category 30 years ago (1985–2002, NQI < 2), whereas it increased from the mesotrophic level in 2005 (NQI = 2.03) to the eutrophic level in 2019 (NQI = 3.33) over the last 20 years. The results based on the eutrophication index (EI) of Daya Bay waters were generally consistent with those based on the NQI, displaying that the trophic level of Daya Bay waters indicated an increasing trend from 2005 to 2019. Moreover, the assessment data in 2021 indicated a decrease in the NQI to 0.90, thereby attaining the oligotrophic level again. This may be related to the decrease in aquacultural area in the bay over the last two years. The correlation analysis among the DIN, PO43−, and nutrient levels of Daya Bay waters indicated that the input of nitrogen and phosphorus was the primary reason for the higher nutrient levels in the water bodies; among them, municipal sewage discharge, aquaculture, and atmospheric deposition from industry are the main factors for the over importation. This indicates that the changes in the biogenic element concentrations led to variations in the trophic structure and level of Daya Bay and may be attributed to population growth and the development of the seaside industry and agriculture in the region.

Funder

National Key R&D Program of China

Guangdong Basic and Applied Basic Research Foundation

Science and Technology Planning Project of Guangdong Province

Fundamental and Applied Fundamental Research Major Program of Guangdong Province

Central Public-Interest Scientific Institution Basal Research Fund, CAFS

Central Public-Interest Scientific Institution Basal Research Fund

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3