Wind Speed Prediction Based on VMD-BLS and Error Compensation

Author:

Jiao Xuguo12ORCID,Zhang Daoyuan1ORCID,Song Dongran3ORCID,Mu Dongdong4,Tian Yanbing1,Wu Haotian1

Affiliation:

1. School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266520, China

2. State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China

3. School of Automation, Central South University, Changsha 410012, China

4. College of Marine Electrical Engineering, Dalian Maritime University, Dalian 116026, China

Abstract

As one of the fastest-growing new energy sources, wind power technology has attracted widespread attention from all over the world. In order to improve the quality of wind power generation, wind speed prediction is an indispensable task. In this paper, an error correction-based Variational Mode Decomposition and Broad Learning System (VMD-BLS) hybrid model is proposed for wind speed prediction. First, the wind speed is decomposed into multiple components by the VMD algorithm, and then an ARMA model is established for each component to find the optimal number of sequence divisions. Second, the BLS model is used to predict each component, and the prediction results are summed to obtain the wind speed forecast value. However, in some traditional methods, there is always time lag, which will reduce the forecast accuracy. To deal with this, a novel error correction technique is developed by utilizing BLS. Through verification experiment with actual data, it proves that the proposed method can reduce the phenomenon of prediction lag, and can achieve higher prediction accuracy than traditional approaches, which shows our method’s effectiveness in practice.

Funder

Shandong Provincial Nature Science Foundation of China

National Natural Science Foundation of China

Lixian Scholar Project of Qingdao University of Technology

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3