Prediction Method for RUL of Underwater Self-Enhancement Structure: Subsea Christmas Tree High-Pressure Valve Actuator as a Case Study

Author:

Liu Peng12ORCID,Dai Chen1,Zhao Shuo1,Li Shuaiqiang1,Liu Bilong1,Liu Guijie3

Affiliation:

1. School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266525, China

2. Key Lab of Industrial Fluid Energy Conservation and Pollution Control (Qingdao University of Technology), Ministry of Education, Qingdao 266520, China

3. Shandong Provincial Key Laboratory of Ocean Engineering, Qingdao 266100, China

Abstract

Underwater pressure-bearing structures are produced in practice by means of pressure self-enhancement methods in order to improve the stress distribution and enhance the pressure-bearing performance. On the other hand, the pairs equation shows that stress is an important factor influencing the degradation of the structure. In fact, improving the stress distribution will not only improve the pressure-bearing performance, but will have an impact on the life degradation trend. Thus, pressure self-enhancement affects the structural life by changing the stress distribution. With this in mind, this paper considers the effect of pressure self-enhancement on the service time of subsea structures, and a Bayesian network (BN)-based method that can be used to predict the remaining useful life (RUL) of underwater self-enhanced structures is proposed. The method also takes into account the influence of multiple sources of structural factors in order to predict the RUL of the structure more accurately. The life degradation process of an all-electric Christmas tree valve actuator is used as a case study. The prediction results are compared with data in the literature to verify the validity of the method. The results have implications for guidance on the O&M assurance of underwater production systems.

Funder

National Natural Science Foundation of Shandong

Key Lab of Industrial Fluid Energy Conservation and Pollution Control (Qingdao University of Technology), Ministry of Education

Shandong Provincial Key Laboratory of Ocean Engineering

National Natural Science Foundation

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3