Comparing Offshore Ferry Lidar Measurements in the Southern Baltic Sea with ASCAT, FINO2 and WRF

Author:

Hatfield DanielORCID,Hasager Charlotte BayORCID,Karagali IoannaORCID

Abstract

This article highlights the inter-comparisons of the wind measurement techniques available in deep water areas working towards combining them to obtain optimal estimates of the wind power potential. More specifically, this article presents comparisons of the Ferry Lidar Experiment wind data with those of the Advanced Scatterometer (ASCAT), the FINO2 meteorological mast, and the New European Wind Atlas (NEWA) simulations performed using the Weather Research, and Forecasting (WRF) mesoscale model. To be comparable to ASCAT surface winds, which are referenced at 10 m, the ferry lidar and FINO2 wind profile measurements were extrapolated down to 10 m using atmospheric stability information derived from the bulk Richardson number formulation. ASCAT had the lowest associated error compared with that of the ferry lidar in near-neutral atmospheric stratifications, whereas FINO2, despite a distance range of 30 km and a moving ferry lidar target, had the highest correlation and lowest RMSE in all atmospheric conditions. Due to the high frequency of low-level jets caused by the proximity to land from all directions as well as typically stable atmospheric conditions, the extrapolated ferry lidar measurements underpredicted the ASCAT 10 m wind speeds. WRF consistently underperformed compared to the other measurement methods, even with the ability to directly compare results with all other sources at all heights.

Funder

European Commission

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference52 articles.

1. An EU Strategy to Harness the Potential of Offshore Renewable Energy for a Climate Neutral Future,2020

2. Offshore wind-an overview

3. Analysis of measurements and simulations from the Hywind Demo floating wind turbine

4. Standardisierung und Vergleichende Analyse der Meteorologischen FINO-Messdaten (FINO123);Leiding,2016

5. Remote Sensing of Complex Flows by Doppler Wind Lidar: Issues and Preliminary Recommendations

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3