Long-Range Dependent Traffic Classification with Convolutional Neural Networks Based on Hurst Exponent Analysis

Author:

Filus KatarzynaORCID,Domański AdamORCID,Domańska JoannaORCID,Marek DariuszORCID,Szyguła JakubORCID

Abstract

The paper examines the ability of neural networks to classify Internet traffic data in terms of self-similarity expressed by the Hurst exponent. Fractional Gaussian noise is used for the generation of synthetic data for modeling the genuine ones. It is presented that the trained model is capable of classifying the synthetic data obtained from the Pareto distribution and the real traffic data. We present the results of training for different optimizers of the cost function and a different number of convolutional layers in the neural network.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference43 articles.

1. Network traffic forecasting model based on long-term intuitionistic fuzzy time series

2. On the self-similar nature of traffic;Willinger;IEEE/ACM Trans. Netw.,1994

3. Lessons from "on the self-similar nature of ethernet traffic"

4. Investigating Long-Range Dependence in E-Commerce Web Traffic;Suchacka,2016

5. Self-similarity Analysis and Application of Network Traffic;Xu,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3