Solvothermal Guided V2O5 Microspherical Nanoparticles Constructing High-Performance Aqueous Zinc-Ion Batteries

Author:

Jia Xianghui1,Yan Kaixi1,Sun Yanzhi1,Chen Yongmei1ORCID,Tang Yang1,Pan Junqing2ORCID,Wan Pingyu1

Affiliation:

1. National Fundamental Research Laboratory of New Hazardous Chemicals Assessment and Accident Analysis, Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Beijing 100029, China

2. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

Rechargeable aqueous zinc-ion batteries have attracted a lot of attention owing to their cost effectiveness and plentiful resources, but less research has been conducted on the aspect of high volumetric energy density, which is crucial to the space available for the batteries in practical applications. In this work, highly crystalline V2O5 microspheres were self-assembled from one-dimensional V2O5 nanorod structures by a template-free solvothermal method, which were used as cathode materials for zinc-ion batteries with high performance, enabling fast ion transport, outstanding cycle stability and excellent rate capability, as well as a significant increase in tap density. Specifically, the V2O5 microspheres achieve a reversible specific capacity of 414.7 mAh g−1 at 0.1 A g−1, and show a long-term cycling stability retaining 76.5% after 3000 cycles at 2 A g−1. This work provides an efficient route for the synthesis of three-dimensional materials with stable structures, excellent electrochemical performance and high tap density.

Funder

National Key Research and Development Project

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3